5,310 research outputs found

    3D MHD Modeling of the Gaseous Structure of the Galaxy: Synthetic Observations

    Full text link
    We generated synthetic observations from the four-arm model presented in Gomez & Cox (2004) for the Galactic ISM in the presence of a spiral gravitational perturbation. We found that velocity crowding and diffusion have a strong effect in the l-v diagram. The v-b diagram presents structures at the expected spiral arm velocities, that can be explained by the off-the-plane structure of the arms presented in previous papers of this series. Such structures are observed in the Leiden/Dwingeloo HI survey. The rotation curve, as measured from the inside of the modeled galaxy, shows similarities with the observed one for the Milky Way Galaxy, although it has large deviations from the smooth circular rotation corresponding to the background potential. The magnetic field inferred from a synthetic synchrotron map shows a largely circular structure, but with interesting deviations in the midplane due to distortion of the field from circularity in the interarm regions.Comment: Accepted for publication in ApJ. Better quality figures in http://www.astro.umd.edu/~gomez/publica/3d_galaxy-3.pd

    From plasmodesma geometry to effective symplasmic permeability through biophysical modelling

    Get PDF
    Regulation of molecular transport via intercellular channels called plasmodesmata (PDs) is important for both coordinating developmental and environmental responses among neighbouring cells, and isolating (groups of) cells to execute distinct programs. Cell-to-cell mobility of fluorescent molecules and PD dimensions (measured from electron micrographs) are both used as methods to predict PD transport capacity (i.e., effective symplasmic permeability), but often yield very different values. Here, we build a theoretical bridge between both experimental approaches by calculating the effective symplasmic permeability from a geometrical description of individual PDs and considering the flow towards them. We find that a dilated central region has the strongest impact in thick cell walls and that clustering of PDs into pit fields strongly reduces predicted permeabilities. Moreover, our open source multi-level model allows to predict PD dimensions matching measured permeabilities and add a functional interpretation to structural differences observed between PDs in different cell walls

    Vervolgstudie inventarisatie en historische analyse van slikken en schorren langs de Zeeschelde: scenario analyse 2D model

    Get PDF
    The research described in this report is made in the framework of the project Vervolgstudie inventarisatie en historische analyse slikken en schorren langs de Zeeschelde. The main purpose of the project is to investigate why some of the evolutions of the slikke and schorre area in the past – described in the report Van Braeckel et al. (2006) – did occur. The main tools to investigate these evolutions are measured data from the past as well as numerical models.With the numerical models different scenarios were studied in order to see how each of them influenced the tidal penetration in the Scheldt estuary. In fact it is change in tidal penetration that will affect the slikke and schorre area. In each scenario one possible cause of tidal change was implemented. A distinction was made between natural evolutions (sea level rise, changes in fresh water discharge) as well as human interventions in the estuary (poldering, straightening of the river, deepening of the navigation channel, …) in the scenarios. In Coen et al (2009) the results of the 1D model are described. In Ides et al. (2008) a sensitivity analysis of the 2D model is carried out, in order to have an idea about the uncertainty interval of the results of the different scenarios. In this report the results of the scenarios will be given

    A [4Fe-4S]-Fe(CO)(CN)-L-cysteine intermediate is the first organometallic precursor in [FeFe] hydrogenase H-cluster bioassembly.

    Get PDF
    Biosynthesis of the [FeFe] hydrogenase active site (the 'H-cluster') requires the interplay of multiple proteins and small molecules. Among them, the radical S-adenosylmethionine enzyme HydG, a tyrosine lyase, has been proposed to generate a complex that contains an Fe(CO)2(CN) moiety that is eventually incorporated into the H-cluster. Here we describe the characterization of an intermediate in the HydG reaction: a [4Fe-4S][(Cys)Fe(CO)(CN)] species, 'Complex A', in which a CO, a CN- and a cysteine (Cys) molecule bind to the unique 'dangler' Fe site of the auxiliary [5Fe-4S] cluster of HydG. The identification of this intermediate-the first organometallic precursor to the H-cluster-validates the previously hypothesized HydG reaction cycle and provides a basis for elucidating the biosynthetic origin of other moieties of the H-cluster

    Vibration-free Cooler for the METIS Instrument Using Sorption Compressors

    Get PDF
    METIS is the “Mid-infrared ELT Imager and Spectrograph” for the European Extremely Large Telescope (E-ELT) that will cover the thermal/mid-infrared wavelength range from 3-14 micron. Starting from a pumped nitrogen line at 70K, it requires cryogenic cooling of detectors and optics at 40 K (1.4 W), 25 K (1.1 W), and 8 K (0.4 W). A vibration-free cooling technology for this instrument based on sorption coolers is under development at the University of Twente in collaboration with Dutch Space. We propose a sorption-based cooler with three cascaded Joule-Thomson coolers of which the sorption compressors are all heat sunk at the 70K platform. A helium-operated cooler is used to obtain the 8K level with a cooling power of 0.4 W. Here, three pre-cooling stages are used at 40K, 25K and 15K. The latter two levels are provided by a hydrogen-based cooler, whereas the 40K level is realized by a neon-based sorption cooler. Based on our space-cooler heritage, our preliminary design used sorption compressors equipped with gas-gap heat switches. These have maximum efficiency, but the gas-gap switches add significantly to the complexity of the system. Since in METIS relatively high cooling powers are required, and thus a high number of compressor cells, manufacturability is an important issue. We, therefore, developed an alternative cylindrical compressor design that uses short-pulse heating establishing a thermal wave in radial direction. This allows to omit the gas-gap heat switch. The paper discusses the adapted cell design and two METIS cooler demonstrator setups that are currently under construction
    • …
    corecore